
1.1 Introduction
The definition of the word Linux depends on the context in which it is used. Linux means
the kernel of the system, which is the central controller of everything that happens on
the computer (more on this later). People that say their computer “runs Linux” usually
refer to the kernel and suite of tools that come with it (called the distribution). If
someone says they have “Linux experience”, they are most likely talking about the
programs themselves. However, they might also be talking about knowing how to add
and partition a new disk or even fine-tune the kernel. Each of these components will be
investigated so that you understand exactly what roles each plays.

What about UNIX? UNIX was originally an operating system developed at AT&T Bell
Labs in the 1970’s. It was modified and forked (that is, people modified it and those
modifications served as the basis for other systems) such that now there are many
different variants of UNIX. However, UNIX is now both a trademark and a specification,
owned by an industry consortium called the Open Group. Only software that has been
certified by the Open Group may call itself UNIX. Despite adopting all the requirements
of the UNIX specification, Linux has not been certified, so Linux really isn’t UNIX! It’s
just… UNIX-like.

1.1.1 Role of the Kernel
The three main components of an operating system are the kernel, shell and filesystem.
The kernel of the operating system is like an air traffic controller at an airport. The
kernel dictates which program gets which pieces of memory, it starts and kills
programs, and it handles displaying text on a monitor. When an application needs to
write to disk, it must ask the operating system to complete the write operation. If two
applications ask for the same resource, the kernel decides who gets it, and in some
cases, kills off one of the applications in order to save the rest of the system.

The kernel also handles switching of applications. A computer will have a small number
of CPUs and a finite amount of memory. The kernel takes care of unloading one task and
loading a new task if there are more tasks than CPUs. When the current task has run a
sufficient amount of time, the CPU pauses the task so that another may run. This is
called pre-emptive multitasking. Multitasking means that the computer is doing several
tasks at once, and pre-emptive means that the kernel is deciding when to switch focus
between tasks. With the tasks rapidly switching, it appears that the computer is doing
many things at once.

Each application may think it has a large block of memory on the system, but it is the
kernel that maintains this illusion, remapping smaller blocks of memory, sharing blocks
of memory with other applications, or even swapping out blocks that haven’t been
touched to disk.

When the computer starts up, it loads a small piece of code called a bootloader. The
bootloader’s job is to load the kernel and get it started. If you are more familiar with
operating systems such as Microsoft Windows or Apple’s OS X, you probably never see
the bootloader, but in the UNIX world it’s usually visible so that you can tweak the way
your computer boots.

The bootloader loads the Linux kernel and then transfers control. Linux then continues
with running the programs necessary to make the computer useful, such as connecting
to the network or starting a web server.

1.1.2 Applications

Like an air traffic controller, the kernel is not useful without something to control. If the
kernel is the tower, the applications are the airplanes. Applications make requests to the
kernel and receive resources, such as memory, CPU, and disk, in return. The kernel also
abstracts the complicated details away from the application. The application doesn’t
know if a block of disk is on a solid-state drive from manufacturer A, a spinning metal
hard drive from manufacturer B, or even a network file share. Applications just follow
the kernel’s Application Programming Interface (API) and in return don’t have to worry
about the implementation details.

When we, as users, think of applications, we tend to think of word processors, web
browsers, and email clients. The kernel doesn’t care if it is running something that’s
user facing, a network service that talks to a remote computer, or an internal task. So,
from this we get an abstraction called a process. A process is just one task that is loaded
and tracked by the kernel. An application may even need multiple processes to function,
so the kernel takes care of running the processes, starting and stopping them as
requested, and handing out system resources.

1.1.3 Role of Open Source
Linux started out in 1991 as a hobby project by Linus Torvalds. He made the source
freely available and others joined in to shape this fledgling operating system. His was
not the first system to be developed by a group, but since it was a built-from-scratch
project, early adopters had the ability to influence the project’s direction and to make
sure mistakes from other UNIXes were not repeated.

Software projects take the form of source code, which is a human readable set of
computer instructions. The source code may be written in any of hundreds of different
programming languages, Linux just happens to be written in C, which is a language that
shares history with the original UNIX.

Source code is not understood directly by the computer, so it must be compiled into
machine instructions by a compiler. The compiler gathers all of the source files and
generates something that can be run on the computer, such as the Linux kernel.

Historically, most software has been issued under a closed-source license, meaning that
you get the right to use the machine code, but cannot see the source code. Often the
license specifically says that you will not attempt to reverse engineer the machine code
back to source code to figure out what it does!

Open source takes a source-centric view of software. The open source philosophy is that
you have a right to obtain the software, and to modify it for your own use. Linux
adopted this philosophy to great success. People took the source, made changes, and
shared them back with the rest of the group.

Alongside this, was the GNU project (GNU’s, not UNIX). While GNU (pronounced "ga-
noo”) was building their own operating system, they were far more effective at building
the tools that go along with a UNIX operating system, such as the compilers and user
interfaces. The source was all freely available, so Linux was able to target their tools and
provide a complete system. As such, most of the tools that are part of the Linux system
come from these GNU tools.

There are many different variants on open source, and those will be examined in a later
chapter. All agree that you should have access to the source code, but they differ in how
you can, or in some cases, must, redistribute changes.

1.1.4 Linux Distributions

Take Linux and the GNU tools, add some more user facing applications like an email
client, and you have a full Linux system. People started bundling all this software into
a distribution almost as soon as Linux became usable. The distribution takes care of
setting up the storage, installing the kernel, and installing the rest of the software. The
full featured distributions also include tools to manage the system and a package
manager to help you add and remove software after the installation is complete.

Like UNIX, there are many different flavors of distributions. These days, there are
distributions that focus on running servers, desktops, or even industry specific tools like
electronics design or statistical computing. The major players in the market can be
traced back to either Red Hat or Debian. The most visible difference is the software
package manager, though you will find other differences on everything from file
locations to political philosophies.

Red Hat started out as a simple distribution that introduced the Red Hat Package
Manager (RPM). The developer eventually formed a company around it, which tried to
commercialize a Linux desktop for business. Over time, Red Hat started to focus more
on the server applications such as web and file serving, and released Red Hat Enterprise
Linux, which was a paid service on a long release cycle. The release cycle dictates how
often software is upgraded. A business may value stability and want long release cycles,
a hobbyist or a startup may want the latest software and opt for a shorter release cycle.
To satisfy the latter group, Red Hat sponsors the Fedora Project which makes a
personal desktop comprising the latest software, but still built on the same foundations
as the enterprise version.

Because everything in Red Hat Enterprise Linux is open source, a project
called CentOS came to be, that recompiled all the RHEL packages and gave them away
for free. CentOS and others like it (such as Scientific Linux) are largely compatible with
RHEL and integrate some newer software, but do not offer the paid support that Red
Hat does.

Debian is more of a community effort, and as such, also promotes the use of open
source software and adherence to standards. Debian came up with its own package
management system based on the .deb file format. While Red Hat leaves non Intel and
AMD platform support to derivative projects, Debian supports many of these platforms
directly.

Ubuntu is the most popular Debian derived distribution. It is the creation of Canonical,
a company that was made to further the growth of Ubuntu and make money by
providing support.

1.2 Hardware Platforms
Linux started out as something that would only run on a computer like Linus’: a 386
with a specific hard drive controller. The range of support grew, as people built support
for other hardware. Eventually, Linux started supporting other chips, including
hardware that was made to run competitive operating systems!

The types of hardware grew from the humble Intel chip up to supercomputers. Later,
smaller-size, Linux supported, chips were developed to fit in consumer devices, called
embedded devices. The support for Linux became ubiquitous such that it is often easier
to build hardware to support Linux and then use Linux as a springboard for your
custom software, than it is to build the custom hardware and software from scratch.

Eventually, cellular phones and tablets started running Linux. A company, later bought
by Google, came up with the Android platform which is a bundle of Linux and the
software necessary to run a phone or tablet. This means that the effort to get a phone to
market is significantly less. Instead of long development on a new operating system,

companies can spend their time innovating on the user facing software. Android is now
one of the market leaders in the phone and tablet space.

Aside from phones and tablets, Linux can be found in many consumer devices. Wireless
routers often run Linux because it has a rich set of network features. The TiVo is a
consumer digital video recorder built on Linux. Even though these devices have Linux at
the core, the end users don’t have to know. The custom software interacts with the user
and Linux provides the stable platform.

1.3 Shell
An operating system provides at least one shell or interface; this allows you to tell the
computer what to do. A shell is sometimes called an interpreter because it takes the
commands that a user issues and interprets them into a form that the kernel can then
execute on the hardware of the computer. The two most common types of shells are the
Graphical User Interface (GUI) and Command Line Interface (CLI).

Windows® typically use a GUI shell, primarily using the mouse to indicate what you
want done. While using an operating system in this way might be considered easy, there
are many advantages to using a CLI, including:

Command Repetition: In a GUI shell, there is no easy way to repeat a previous
command. In a CLI there is an easy way to repeat (and also modify) a previous
command.

Command Flexibility: The GUI shell provides limited flexibility in the way the
command executes. In a CLI, options are specified with commands to provide a much
more flexible and powerful interface.

Resources: A GUI shell typically uses a vast amount of resources (RAM, CPU, etc.). This
is because a great deal of processing power and memory is needed to display graphics.
By contrast, a CLI uses very little system resources, allowing more of these resources to
be available to other programs.

Scripting: In a GUI shell, completing multiple tasks often requires multiple mouse
clicks. With a CLI, a script can be created to execute many complex operations by typing
just a single "command": the name of the script. A script is a series of commands placed
into a single file. When executed, the script runs all of the commands in the file.

Remote Access: While it is possible to remotely execute commands in a GUI shell, this
feature isn't typically set up by default. With a CLI shell, gaining access to a remote
machine is easy and typically available by default.

Development: Normally a GUI-based program takes more time for the developers to
create when compared to CLI-based programs. As a result, there are typically thousands
of CLI programs on a typical Linux OS while only a couple hundred programs in a
primarily GUI-based OS like Microsoft Windows®. More programs means more power
and flexibility.

The Microsoft Windows® Operating System was designed to primarily use the GUI
interface because of its simplicity, although there are several CLI interfaces available,
too. For simple commands, there is the Run dialog box, where you can type or browse to
the commands that you want to execute. If you want to type multiple commands or if
you want to see the output of the command, you can use the Command Prompt, also
called the DOS shell. Recently, Microsoft realized how important it is to have a powerful
command line environment and, as a result, has introduced the Powershell.

Like Windows™, Linux also has both a CLI and GUI. Unlike Windows™, Linux lets you
easily change the GUI shell (also called the desktop environment) that you want to use.

The two most common desktop environments for Linux are GNOME and KDE, however
there are many other GUI shells available.

To access the CLI from within the GUI on a Linux operating system, the user can open a
software program called a terminal. Linux can also be configured to only run the CLI
without the GUI; this is typically done on servers that don't require a GUI, primarily to
free up system resources.

1.4 Bash Shell
Not only does the Linux operating system provide multiple GUI shells, multiple CLI
shells are also available. Normally, these shells are derived from one of two older UNIX
shells: The Bourne Shell and the C Shell. In fact, the bash shell derives its name from the
Bourne Shell: Bourne Again SHell. In this course, you will focus upon learning how to
use the CLI for Linux with the bash shell, arguably the most popular CLI in Linux.
The bash shell has numerous built-in commands and features that you will learn
including:

 Aliases: Give a command a different or shorter name to make working
with the shell more efficient.

 Re-Executing Commands: To save retyping long command lines.
 Wildcard Matching: Uses special characters like ?, *, and [] to select one

or more files as a group for processing.
 Input/Output Redirection: Uses special characters for redirecting

input, <or <<, and output, >.
 Pipes: Used to connect one or more simple commands to perform more

complex operations.
 Background Processing: Enables programs and commands to run in the

background while the user continues to interact with the shell to
complete other tasks. For example:

 sysadmin@localhost:~/test$ sort red.txt &

[1] 108

The shell that your user account uses by default is set at the time your user account was
created. By default, many Linux distributions use bash for a new user's shell. An
administrator can use the usermod command to specify a different default shell after the
account has been created.

As a user, you can use the chsh command to change your default shell.

The location where the system stores the default shell for user accounts is
the /etc/passwd file.

Note: The usermod and chsh commands, as well as the /etc/passwdfile will be discussed in
greater detail later in this course.

Typically, a user learns one shell and sticks with that shell, however after you have
learned the basics of Linux, you may want to explore the features of other shells.

1.5 Accessing the Shell
How you access the command line shell depends on whether your system provides a
GUI login or CLI login:

 GUI-based systems: If the system is configured to present a GUI, then you
will need to find a software application called a Terminal. In the GNOME
desktop environment, the Terminal application can be started by clicking
the Applications menu, then the System Tools menu and Terminal icon.

 CLI-based systems: Many Linux systems, especially servers, are not
configured to provide a GUI by default, so instead they present a CLI. If
the system is configured to present a CLI, then the system runs a terminal
application automatically for you after you login.

In the early days of computing, terminal devices were large machines that allowed users
to provide input through a keyboard and displayed output by printing on paper. Over
time, terminals evolved and their size shrank down into something that looked similar
to a desktop computer with a video display monitor for output and a keyboard for input.

Ultimately, with the introduction of personal computers, terminals became software
emulators of the actual hardware. Whatever you type in the terminal is interpreted by
your shell and translated into a form that can then be executed by the kernel of the
operating system.

If you are in a remote location, then pseudo-terminal connections can also be made
across the network using several techniques. Insecure connections could be made using
protocols such as telnet and programs such as rlogin, while secure connections can be
established using programs like putty and protocols such as ssh.

1.6 Filesystems
In addition to the kernel and the shell, the other major component of any operating
system is the filesystem. To the user, a filesystem is a hierarchy of directories and files
with the root / directory at the top of the directory tree. To the operating system, a
filesystem is a structure created on a disk partition consisting of tables defining the
locations of directories and files. In this course, you will learn about the different Linux
filesystems, filesystem benefits and how to create and manage filesystems using
commands like fsck, mount and other disk and filesystem management commands.

1.7 What is a Command?
The simplest answer to the question, "What is a command?", is that a command is a
software program that when executed on the command line, performs an action on the
computer.

When you consider a command using this definition, you are really considering what
happens when you execute a command. When you type in a command, a process is run
by the operating system that can read input, manipulate data and produce output. From
this perspective, a command runs a process on the operating system, which then causes
the computer to perform a job.

However, there is another way of looking at what a command is: look at its source. The
source is where the command "comes from" and there are several different sources of
commands within the shell of your CLI:

 Commands built-in to the shell itself: A good example is the cd

command as it is part of the bash shell. When a user types the cd

command, the bash shell is already executing and knows how to interpret
that command, requiring no additional programs to be started.

 Commands that are stored in files that are searched by the shell: If
you type a ls command, then the shell searches through the directories
that are listed in the PATH variable to try to find a file named ls that it can

execute. These commands can also be executed by typing the complete
path to the command.

 Aliases: An alias can override a built-in command, function, or a
command that is found in a file. Aliases can be useful for creating new
commands built from existing functions and commands.

 Functions: Functions can also be built using existing commands to either
create new commands, override commands built-in to the shell or
commands stored in files. Aliases and functions are normally loaded from
the initialization files when the shell first starts, discussed later in this
section.

Consider This

While aliases will be covered in detail in a later section, this brief example may be
helpful in understanding the concept of commands.

An alias is essentially a nickname for another command or series of commands. For
example, the cal 2014 command will display the calendar for the year 2014. Suppose you
end up running this command often. Instead of executing the full command each time,
you can create an alias called mycal and run the alias, as demonstrated in the following
graphic:

sysadmin@localhost:~$ alias mycal="cal 2014"

sysadmin@localhost:~$ mycal

 2014

 January February March

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 3 4 1 1

 5 6 7 8 9 10 11 2 3 4 5 6 7 8 2 3 4 5 6 7 8

12 13 14 15 16 17 18 9 10 11 12 13 14 15 9 10 11 12 13 14 15

19 20 21 22 23 24 25 16 17 18 19 20 21 22 16 17 18 19 20 21 22

26 27 28 29 30 31 23 24 25 26 27 28 23 24 25 26 27 28 29

 30 31

 April May June

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7

 6 7 8 9 10 11 12 4 5 6 7 8 9 10 8 9 10 11 12 13 14

13 14 15 16 17 18 19 11 12 13 14 15 16 17 15 16 17 18 19 20 21

20 21 22 23 24 25 26 18 19 20 21 22 23 24 22 23 24 25 26 27 28

27 28 29 30 25 26 27 28 29 30 31 29 30

 July August September

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 3 4 5 1 2 1 2 3 4 5 6

 6 7 8 9 10 11 12 3 4 5 6 7 8 9 7 8 9 10 11 12 13

13 14 15 16 17 18 19 10 11 12 13 14 15 16 14 15 16 17 18 19 20

20 21 22 23 24 25 26 17 18 19 20 21 22 23 21 22 23 24 25 26 27

27 28 29 30 31 24 25 26 27 28 29 30 28 29 30

 31

 October November December

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 3 4 1 1 2 3 4 5 6

 5 6 7 8 9 10 11 2 3 4 5 6 7 8 7 8 9 10 11 12 13

12 13 14 15 16 17 18 9 10 11 12 13 14 15 14 15 16 17 18 19 20

19 20 21 22 23 24 25 16 17 18 19 20 21 22 21 22 23 24 25 26 27

26 27 28 29 30 31 23 24 25 26 27 28 29 28 29 30 31

 30

1.8 Commands That Are Stored In Files
Commands that are stored in files can be in several forms that you should be aware of.
Most commands are written in the C programming language, which is initially stored in
a human-readable text file. These text source files are then compiled into computer-
readable binary files, which are then distributed as the command files.

Users who are interested in seeing the source code of compiled, GPL licensed software
can find it through the sites where it originated, such as kernel.org. GPL licensed code
also compels distributors of the compiled binaries, such as RedHat and Debian, to make
the source code available. Often it is found in the distributors’ repositories.

Consider This

Although it is not part of the Linux Essentials exam, it is possible to view available
software packages at the command line. Type the following command into the terminal
to view the available source packages for the GNU Compiler Collection:

sysadmin@localhost:~$ apt-cache search source | grep gcc

gcc-4.8-source - Source of the GNU Compiler Collection

gcc-4.4-source - Source of the GNU Compiler Collection

gcc-4.6-source - Source of the GNU Compiler Collection

gcc-4.7-source - Source of the GNU Compiler Collection

Command files can also contain human-readable text in the form of script files. A script
file is a collection of commands that is typically executed at the command line.

The ability to create your own script files is a very powerful feature of the CLI. If you
have a series of commands that you regularly find yourself typing in order to
accomplish some task, then you can easily create a bash shell script to perform these
multiple commands by typing just one command: the name of your script file. You
simply need to place these commands into a file and make the file executable (more
details on this will be provided in a later unit).

Summary of Key Terms

Command: Something that a user types in a CLI that will result in an action taking place
on the system.

Compiled: The result of converting human-readable text code into system-readable
binary code.

Source Code: The original human-readable text code.

Script File: A text file that contains commands and has been made executable.

1.9 Basic Command Syntax
Most commands follow a simple pattern of syntax:

command [options…] [arguments…]

In other words, you type a command, followed by one or more options (which are not
always required) and one or more arguments before you press the Enter key. Although
there are some commands in Linux that aren’t entirely consistent with this syntax, most
commands use this syntax.

When typing a command that is to be executed, the first step is to type the name of the
command. The name of the command is often based on what it does or what the
developer who created the command thinks will best describe the command's function.

For example, the ls command displays a listing of information about files. Associating the
name of the command with something mnemonic for what it does may help you to
remember commands more easily.

You must remember that every part of the command is normally case-sensitive, so LS is
incorrect and will fail, but ls is correct and will succeed.

In the following example, the ls command is executed without any options or arguments,
which results in the current directory contents being displayed. Many commands, like
the ls command, can run successfully without any options or arguments, but be aware
that there are commands that require you to type more than just the command alone.

sysadmin@localhost:~$ ls

Desktop Documents Downloads Music Pictures Public Templates Videos test

1.10 Specifying Options
If it is necessary for you to add options, they can be specified after the command
name. Short options are specified with a hyphen - followed by a single character. Short
options are how options were traditionally specified.

Often the character is chosen to be mnemonic for its purpose, like choosing the letter "a"
for "all".

Multiple single options can be either given as separate options like -a -l -r or combined
like -alr.

In the following example, the -l option is provided to the ls command, which results in a
"long display" output:

sysadmin@localhost:~$ ls -l

total 0

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Desktop

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Documents

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Downloads

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Music

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Pictures

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Public

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Templates

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Videos

drwxr-xr-x 1 sysadmin sysadmin 420 Sep 18 22:25 test

Note: More details will be provided in a later section regarding the function of
the ls command. For now, it is just being used to demonstrate how to execute commands
on the command line.

You can type the name of a command with multiple short options. The output of all of
these examples is the same, -l will give a long listing, while -r reverses the display order
of the results:

 ls -l -r
 ls -rl
 ls -lr

sysadmin@localhost:~$ ls -l -r

total 0

drwxr-xr-x 1 sysadmin sysadmin 420 Sep 18 22:25 test

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Videos

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Templates

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Public

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Pictures

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Music

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Downloads

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Documents

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Desktop

Generally, short options can be combined with other short options in any order. The
exception to this is when an option requires an argument.

For example, the -w option to the ls command specifies the width of the output desired
and therefore requires an argument. If combined with other options, the -w option can
be specified last, followed by its argument and still be valid, as in ls -rtw 40, which
specifies an output width of 40 characters. Otherwise, the -w option cannot be combined
with other options, and must be given separately.

sysadmin@localhost:~$ ls -l -r

total 0

drwxr-xr-x 1 sysadmin sysadmin 420 Sep 18 22:25 test

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Videos

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Templates

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Public

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Pictures

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Music

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Downloads

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Documents

drwxr-xr-x 1 sysadmin sysadmin 0 Sep 18 22:25 Desktop

If using multiple options that require arguments, then don't combine them. For
example, the -T option also requires an argument. In order to accommodate both
arguments, each option is given separately:

sysadmin@localhost:~$ ls -w 40 -T 12

Desktop Music Templates

Documents Pictures Videos

Downloads Public test

Some commands support additional options that are longer than a single
character. Long options for commands are preceded by a double hyphen --and the
meaning of the option is typically the name of the option, like --all. For example:

sysadmin@localhost:~$ ls --all

. .bashrc .selected_editor Downloads Public test

.. .cache Desktop Music Templates

.bash_logout .profile Documents Pictures Videos

For commands that support both long and short options, execute the command using
the long and short options concurrently:

sysadmin@localhost:~$ ls --all --reverse -t

.profile Videos Pictures Documents .bashrc .

.bash_logout Templates Music Desktop ..

test Public Downloads .selected_editor .cache

Commands that support long options will often also support arguments that may be
specified with or without an equal symbol (the output of both commands is the same):

 ls --sort time
 ls --sort=time

sysadmin@localhost:~$ ls --sort=time

Desktop Documents Downloads Music Pictures Public Templates Videos test

A special option exists, the "lone" double hyphen --, which can be used to indicate the
end of all options for the command. This can be useful in some circumstances where it is
unclear whether some text that follows the options should be interpreted as an
additional option or as an argument to the command.

For example, if the touch command tries to create a file called --badname:

sysadmin@localhost:~$ touch --badname

touch: unrecognized option '--badname'

Try 'touch --help' for more information.

The command tries to interpret --badname as an option instead of an argument. However
if the lone double hyphen -- is placed before the filename, indicating that there are no
more options, then the the filename can successfully be interpreted as an argument:

sysadmin@localhost:~$ touch -- --badname

sysadmin@localhost:~$ls

--badname Documents Music Public Videos

Desktop Downloads Pictures Templates test

Note: The file name in the previous example is considered to be "bad" because putting
hyphens in the beginning of file names, while allowed, can cause problems when trying
to access the file.

Consider This

A third type of option exists for a select few commands. While the options used in the
AT&T version of UNIX used a single hyphen and the GNU port of those commands used
two hyphens, the Berkley Software Distribution (BSD) version of UNIX used options
with no hyphen at all.

This "no hyphen" syntax is fairly rare in most Linux distributions. A couple of notable
commands that support the BSD UNIX style options are the ps and tar commands; both of
these commands also support the single and double hyphen style of options.

In the terminal below, there are two similar commands, the first command is executed
with a traditional UNIX style option (with single hyphens) and the second command is
executed with a BSD style option (no hyphens).

sysadmin@localhost:~$ ps -u sysadmin

 PID TTY TIME CMD

 79 ? 00:00:00 bash

 122 ? 00:00:00 ps

sysadmin@localhost:~$ ps u

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

sysadmin 79 0.0 0.0 18176 3428 ? S 20:23 0:00 -bash

sysadmin 120 0.0 0.0 15568 2040 ? R+ 21:26 0:00 ps u

1.11 Specifying Arguments
After the command and any of its options, many commands will accept one or more
arguments. Commands that use arguments may require one or more of them. For
example, the touch command shown on the previous page requires at least one argument
to specify the filename to act upon.

The ls command, on the other hand, allows for the filename argument to be specified,
but it was not required. Some commands like the cp command (copy file) and
the mv command (move file) require at least two arguments, the source and the
destination file.

Arguments that contain unusual characters like spaces or non-alphanumeric characters
will usually need to be quoted, either by enclosing them within double quotes or single
quotes. Double quotes will prevent the shell from interpreting some of these special
characters; single quotes prevent the shell from interpreting any special characters.

In most cases, single quotes are "safer" and should probably be used whenever you have
an argument that contains characters that aren't alphanumeric. Quotes and special
characters will be covered in greater detail in a later section, but if you want an idea of
how important they are, take a look at the example in the Consider This section.

Consider This

To understand the importance of quotes, consider a simple scenario in which you want
to go to your home directory (which can be accomplished with the cd command) and
execute the echo command to display the string "hello world!!" on the screen.
The echo command displays text to the terminal.

You might first try the echo command without any quotes, unfortunately without
success:

sysadmin@localhost:~$ cd

sysadmin@localhost:~$ echo hello world!!

echo hello worldcd

hello worldcd

Using no quotes failed because the shell interprets the !! characters as special shell
characters; in this case they mean "replace the !! with the last command that was
executed". In this case, the last command was the cd command, so cd replaced !! and then
the echo command displayed hello worldcd to the screen.

You may want to try the double quotes to see if they will block the interpretation
(or expansion) of the !! characters. The double quotes block the expansion of some
special characters, but not all of them. Unfortunately, double quotes do not block the
expansion of !!:

sysadmin@localhost:~$ cd

sysadmin@localhost:~$ echo "hello world!!"

echo "hello worldcd"

hello worldcd

Using double quotes preserves the literal value of all characters that they enclose except
the $ (dollar sign), ` (backquote), \ (backslash) and !(exclamation point).

When you enclose text within the ' (single quote) characters, then all characters have
their literal meaning:

sysadmin@localhost:~$ cd

sysadmin@localhost:~$ echo 'hello world!!'

hello world!!

1.12 exec Command
One exception to the basic command syntax used is the exec command, which takes as an
argument another command to execute. What is special about the commands that are
executed with exec is that they replace the currently running shell.

A common use of the exec command is in what are known as wrapper scripts. If the
purpose of a script is to simply configure and launch another program, then it is known
as a wrapper script.

In a wrapper script the last line of the script often uses exec program (where program is the
name of another program to execute) to start some other program. A script written this
way avoids having a shell continue to run while the program that it launched is running,
the result is that this technique saves resources (like RAM).

Although redirection of input and output to a script are discussed in another section, it
should also be mentioned that exec can be used to cause redirection for one or more
statements in a script.

1.13 uname Command
The uname command displays system information. This command will output Linux by
default when it is executed without any options.

sysadmin@localhost:~$ uname

Linux

Options for the uname command are as follows:

Short Option Long Option Prints

-a --all All information

-s --kernel-name Kernel name

-n --node-name Network node name

-r --kernel-release Kernel release

-v --kernel-version Kernel version

-m --machine Machine hardware name

-p --processor Processor type or unknown

-i --hardware-platform Hardware platform or unknown

-o --operating-system Operating system

 --help Help information

Short Option Long Option Prints

 --version Version information

The uname command is useful for several reasons, including when you need to determine
the name of the computer as well as the current version of the kernel that is being used.

1.14 pwd Command
One of the simplest commands available is the pwd command, which is mnemonic for
"print working directory". When executed without any options, the pwd command will
display the name of the directory where the user is currently located in the file system.

sysadmin@localhost:~$ pwd

/home/sysadmin

1.15 Command Completion
A useful tool of the bash shell is the ability to automatically complete commands and
their arguments. Like many command line shells, bash offers command line completion,
where you type a few characters of a command (or its filename argument) and then
press the Tab key. The bash shell will complete the command (or its filename
argument) automatically for you. For example, if you type ech and press Tab, then the
shell will automatically complete the command echo for you.

There will be times when you type a character or two and press the Tab key, only to
discover that bash does not automatically complete the command. This will happen
when you haven't typed enough characters to match only one command. However,
pressing the Tab key a second time in this situation will display the possible
completions (possible commands) available.

A good example of this would be if you typed ca and pressed Tab, then nothing would be
displayed. If you pressed Tab a second time, then the possible ways to complete a
command starting with ca would be shown:

sysadmin@localhost:~$ ca

cal capsh cat cautious-launcher

calendar captoinfo catchsegv

caller case catman

sysadmin@localhost:~$ ca

Another possibility may occur when you have typed too little to match a single
command name uniquely. If there are more possible matches to what you've typed than
can easily be displayed, then the system will ask you if you want to display all
possibilities.

For example, if you just type c and press the Tab key twice, the system may provide you
with a prompt like:

Display all 102 possibilities? (y or n)

You should probably respond with n in a situation like this and then continue to type
more characters to achieve a more refined match.

A common mistake when typing commands is to misspell the command. Not only will
you type commands faster, but you will type more accurately if you use command
completion. Using the Tab key to automatically complete the command helps to ensure
that the command is typed correctly.

Note that completion also works for arguments to commands when the arguments are
file or directory names.

Chapter Objectives

Chapter 1: Using the Shell
This chapter will cover the following exam objectives:

103.1: Work on the command line

Weight: 4

Description: Candidates should be able to interact with shells and commands using the
command line. The objective assumes the Bash shell.

Key Knowledge Areas:

 Use single shell commands and one line command sequences to perform basic tasks
on the command line
Section 1.7 | Section 1.9 | Section 1.10 | Section 1.11

KEY TERMS

Chapter 1: Using the Shell

bash

Bourne Again SHell - an sh-compatible command language interpreter that executes

commands read from the standard input or from a file.
Section 1.3

echo

Echo the STRING(s) to standard output. Useful with scripts.
Section 1.11

ls

Command that will list information about files. The current directory is listed by default.
Section 1.9

pwd

Print the name of the current working directory.
Section 1.14

uname

https://content.netdevgroup.com/contents/lpic1-s1/1/1.7
https://content.netdevgroup.com/contents/lpic1-s1/1/1.9
https://content.netdevgroup.com/contents/lpic1-s1/1/1.10
https://content.netdevgroup.com/contents/lpic1-s1/1/1.11
https://content.netdevgroup.com/contents/lpic1-s1/1/#c1
https://content.netdevgroup.com/contents/lpic1-s1/1/1.3
https://content.netdevgroup.com/contents/lpic1-s1/1/1.11
https://content.netdevgroup.com/contents/lpic1-s1/1/1.9
https://content.netdevgroup.com/contents/lpic1-s1/1/1.14

Print certain system information such as kernel name, network node hostname, kernel

release, kernel version, machine hardware name, processor type, hardware platform,

and operating system, depending on options provided.
Section 1.13

https://content.netdevgroup.com/contents/lpic1-s1/1/1.13

